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RHODIUM(I)-CATALYZED REGIO- AND
STEREOSELECTIVE CHLOROESTERIFICATION
OF FURANOSE-DERIVED TERMINAL ALKYNES

WITH ETHYL CHLOROFORMATE

Stanislaw F. Wnuk,* Carlos A. Valdez, and Neida X. Valdez

Department of Chemistry, Florida International University, Miami, FL
33199, USA

ABSTRACT

Treatment of ribose-, xylose- and homologated ribose-derived terminal
alkynes with ethyl chloroformate in the presence of a catalytic amount of
RhCl(CO)(PPh3)2 in toluene effected syn chloroalkoxycarbonylation to give
doubly functionalized vinylic derivatives.

INTRODUCTION

Sugar acetylenes are valuable chiral precursors with wide applications in or-
ganic synthesis.1-4 The stereocontrolled synthesis of the alkynyl C-glycosides and
their reactivities1a and the free radical cycloisomerization of optically active alkyne-
precursors derived from carbohydrates1b have been reviewed. Chromium-mediated
benzannulation,3a Pauson-Khand [2 � 2 � 1] cyclization,3b and oxidative dimer-
ization3c of sugar acetylenes were recently reported. Glycosylacetylene-phenylala-
nine building blocks were used in the synthesis of neoglycopeptide templates,4a and
diastereoselective ethynylation of methyl 2,3,4-tri-O-benzyl-�-D-gluco-hexodi-
aldo-1,5-pyranoside was utilized in the construction of the C-glycosyl amino acid
backbone A of miharamycin antibiotic.4b Moreover, various nucleosides with
acetylenic functions in the sugar moieties have been prepared,5-7 and several have
potent antitumor (e.g., B5) and biosynthetic inhibitory activities (Figure 1).5-7

Acetylenic sugars have been prepared by: (a) Grignard addition of acetylide
anions to the corresponding hemiacetal,1b,8 lactone4a or aldehyde/keto deriva-
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tives;4b,5 (b) reaction of the glycals with silylacetylenes in acidic media;1a,3b (c)
condensation of sugar aldehydes with the Wittig-dibromomethylene reagents2a,6b,7

(or diazomethylphosphonate2a,7a) and dehydrobromination; and (d) oxidative
destannylation of vinyl stannane derivatives.6a

The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hy-
drolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy).9 Ow-
ing to its central role in the regulation of biological methylation reactions, the in-
hibition of AdoHcy hydrolase represents an attractive target for developing the
mechanism-based chemotherapy of cancer and viral diseases.10 Moreover, ele-
vated plasma levels of Hcy in humans have been shown to be a risk factor in coro-
nary artery diseases.11

The (dihalohomovinyl)adenosine derivatives, C, inhibit AdoHcy hydrolase
and are enzymatically hydrolyzed to give the homoAdo 6′-carboxyl halides at the
active site.12 Nucleophilic attack by proximal amino acid functionalities was
shown to produce covalent inhibition.12b The X-ray crystallographic determination
of AdoHcy hydrolase revealed a unique role for a catalytic water molecule at the
active site.13 We recently prepared “doubly homologated” vinyl halides, D, and
acetylenic adenine nucleosides with greater conformational flexibility at C5′.14

The 7′-dihalovinyl nucleosides D were prepared from sugar precursors because ho-
moAdo 6′-aldehyde, which was the obvious intermediate for the synthesis of D via
the Wittig approach, is known to be unstable.6a We now report a one-step conver-
sion of ribo- and xylofuranose acetylenes into vinylic derivatives functionalized
with chloro and ethoxycarbonyl groups as precursors for the synthesis of the cor-
responding adenine nucleosides which may interact with AdoHcy hydrolase.

RESULTS AND DISCUSSION

Ribo-, 1a,b, and xylofuranose, 1c, acetylene precursors were prepared by a
modified6b Tronchet procedure.2a Thus, sequential15 (one-flask), selective hydrol-
ysis of the 5,6-O-isopropylidene acetal from 1,2:5,6-di-O-isopropylidene-�-D-
allofuranose and oxidative cleavage of the exposed glycol with periodic acid gave
dehomologated 5-aldehyde. Wittig-type olefination with dibromomethylene
reagent (Ph3P/CBr4) followed by treatment of the resulting dibromovinyl interme-
diate with BuLi16 afforded 5,6-dideoxy-1,2-O-isopropylidene-�-D-ribo-hex-5-
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ynofuranose6b (1; X � H, Y � OH; Scheme 1). Silylation or benzoylation of O3
gave 1a and 1b6b in good yield.

Treatment of 1a with ethyl chloroformate in toluene (110 °C/7 h) in the pres-
ence of a  catalytic amount of carbonylchlorobis(triphenylphosphine)rhodium(I)
[RhCl(CO)(PPh3)2] (0.01 equiv.)17 effected syn chloroesterification to give a sin-
gle isomer 2a (82%). Analogous treatment of 1b and column chromatography gave
2b (71%) and minor quantity of a second product, tentatively assigned as dimer 3b
(10%). The xylofuranose acetylene 1c2a also gave the desired alkene 2c (68%) and
a dimer 3c (11%). Formation of traces of dimers under these conditions were also
observed by Tanaka and coworkers.17

The structure of products 2 and 3 were confirmed by 1H and 13C NMR as well
NOE, DEPT, and HETCOR experiments in addition to MS and elemental analy-
ses. For example, NOE difference spectroscopy experiments showed an 8% en-
hancement of the allylic proton (H4) signal at � 4.87 for 2b upon irradiation of the
vinylic proton H6 at � 6.51 thus verifying syn addition17 to a triple bond. The di-
ene-type dimer 3b had a singlet for H6 at � 6.95 and 13C DEPT experiment showed
the quaternary C5 at � 135.07 and C6 at � 124.24. These data are in agreement with
the literature values for the 1,4-dichloro-1,3-butadienes.18

The generality of the rhodium-catalyzed chloroesterification of alkynes was
further illustrated with ribofuranoside acetylene 4. Treatment of 42a with ethyl
chloroformate and purification gave 5(72%, Scheme 2) plus minor byproducts
which were not isolated.

Recently, we reported the synthesis of dibromovinylheptofuranose 6 from
1,2-O-isopropylidene-�-D-glucose.14 The key steps involved regioselective oxida-
tion to the 5-ketone, deoxygenation via its tosylhydrazone, and inversion of con-
figuration at C3. Moffatt oxidation of the resulting ribohexofuranose and treatment
of the crude 6-aldehyde with (dibromomethylene)triphenylphosphorane gave 6.14

Treatment of 6 with excess BuLi effected dehydrobromination to give acetylenic
homologated ribose 7 (Scheme 3). Rhodium-catalyzed syn chloroethoxycarbony-
lation of 7 gave single isomer 8 (69 %).
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EXPERIMENTAL

Uncorrected melting points were determined with a capillary tube apparatus.
1H (Me4Si) NMR spectra were determined at 400 MHz and 13C (Me4Si) at 100.6
MHz in CDCl3 solution. Mass spectra (MS and HRMS) were obtained by atmo-
spheric pressure chemical ionization (APCI), chemical ionization (CI, CH4), or fast
atom bombardment (FAB, 5% trifluoroacetic acid/thioglycerol matrix) techniques.
Reagent grade chemicals were used and solvents were dried by reflux over and dis-
tillation from CaH2 under an argon atmosphere. TLC was performed on Merck
kieselgel 60-F254 with EtOAc/hexane (1:4) as a developing system; and products
were detected with 254 nm light or by development of color with
Ce(SO4)2/(NH4)6Mo7.O244H2O/H2SO4/H2O. Merck kieselgel 60 (230-400 mesh)
was used for column chromatography. Elemental analyses were determined by
Galbraith Laboratories, Knoxville, TN.

3-O-(tert-Butyldimethylsilyl)-5,6-dideoxy-1,2-O-isopropylidene-�-D-ribo-
hex-5-ynofuranose (1a). tert-Butyldimethylsilyl (TBDMS) chloride (188 mg, 1.25
mmol) was added to a solution of 5,6-dideoxy-1,2-O-isopropylidene-�-D-ribo-
hex-5-ynofuranose6b (1; X � H, Y � OH; 368 mg, 2mmol) in dried pyridine (5
mL) and stirring was continued for 24 h at ambient temperature. Volatiles were
evaporated in vacuo and toluene was added (2 � 3 mL) and evaporation was con-
tinued. The residue was partitioned (EtOAc/H2O) and the organic phase was
washed (H2O, brine), dried (Na2SO4), and filtered. Volatiles were evaporated and
the residue was column chromatographed (5 → 20% EtOAc/hexane) to give 1a
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Scheme 2.

Scheme 3.
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(263 mg, 88%) as a syrup: 1H NMR � 0.12 (s, 6H, 2 � Me), 0.91 (s, 9H, t-Bu), 1.30
and 1.51 (2 � s, 2 � 3H, 2 � Me), 2.51 (d, 1H, J6,4 � 2.0 Hz, H-6), 4.02 (dd, 1H,
J3,4 � 8.8 Hz, J3,2 � 4.4 Hz, H-3), 4.43 (“t”, 1H, J � 4.1 Hz, H-2), 4.49 (dd, 1H,
H-4), 5.77 (d, 1H, J1,2 � 3.6 Hz, H-1); 13C NMR � �4.32, �4.20 (2 � Me), 18.68
(CMe3), 26.15 (CMe3), 26.93 and 27.10 (CMe2), 69.95 (C-4), 75.08 (C-6), 77.81
(C-3), 79.23 (C-2), 80.86 (C-5), 104.23 (C-1), 113.32 (CMe2). HRMS (CI) Calcd
for C15H26O4Si � H: 299.1678. Found: 299.1682.

Anal. Calcd for C15H26O4Si (298.45): C, 60.37; H, 8.78. Found: C, 60.41; H,
8.81.

Ethyl (Z)-3-O-(tert-Butyldimethylsilyl)-5-chloro-5,6-dideoxy-1,2-O-iso-
propylidene-�-D-ribo-hept-5-enofuranuronate (2a). Procedure A. Argon was bub-
bled through a solution of 1a (75 mg, 0.25 mmol) and ClCO2Et (0.12 mL, 135 mg,
1.25 mmol) in dried toluene  (2 mL) for 30 min at ambient temperature.
RhCl(CO)(PPh3)2 (1.7 mg, 0.0025 mmol) was then quickly added and the result-
ing mixture was heated in a pressure tube (Ace glass, 15 mL) at 110 °C for 7 h. Af-
ter cooling, volatiles were evaporated and the residue was partitioned
(EtOAc//NaHCO3/H2O), and the aqueous layer was extracted (EtOAc). The com-
bined organic phase was washed (brine) and dried (MgSO4). Volatiles were evap-
orated and the residue was column chromatographed (5 → 20 % EtOAc/hexane) to
give 2a (83 mg, 82%) as a syrup:  1H NMR � 0.10 and 0.12 (2 � s, 2 � 3H, 2 �
Me), 0.91 (s, 9H, t-Bu), 1.30 (t, 3H, J � 7.1 Hz, CH3), 1.35 and 1.60 (2 � s, 2 �
3H, 2 � Me), 4.08 (dd, 1H, J3,4 � 8.3 Hz, J3,2 � 4.4 Hz, H-3), 4.25 (q, 2H, J � 7.1
Hz, CH2), 4.45 (d, 1H, H-4), 4.50 (“t”, 1H, J � 3.8 Hz, H-2), 5.86 (d, 1H, J1,2 �
3.2 Hz, H-1), 6.37 (s, 1H, H-6); 13C NMR � �4.50, �4.41 (2 � Me) 14.54 (CH3),
18.53 (CMe3), 26.05 (CMe3), 26.99 and 27.27 (CMe2), 61.02 (CH2), 76.04 (C-3),
79.75 (C-2), 83.35 (C-4), 104.52 (C-1), 113.69(CMe2), 119.70 (C-6), 145.43 (C-
5), 163.80 (C-7). HRMS (FAB) Calcd for C18H31

35ClO6Si � Na: 429.1476.
Found: 429.1502.

Anal. Calcd for C18H31ClO6Si (406.98): C, 53.12; H, 7.68. Found: C, 53.18;
H, 7.76.

Ethyl (Z)-3-O-Benzoyl-5-chloro-5,6-dideoxy-1,2-O-isopropylidene-�-D-
ribo-hept-5-enofuranuronate (2b). Treatment of 1b6b (100 mg, 0.35 mmol) by pro-
cedure A [TLC indicated complete consumption of 1b (Rf 0.61) with formation of
more polar components: 2b (Rf 0.58, major) and 3b (Rf 0.49)] gave 2b (98g, 71%):
mp 117-118 °C (MeOH); 1H NMR � 1.31 (t, 3H, J � 7.1 Hz, CH3), 1.38 and 1.60
(2 � s, 2 � 3H, 2 � Me), 4.25 (q, 2H, J � 7.1 Hz, CH2), 4.87 (d, 1H, J4,3 � 8.4 Hz,
H-4), 5.04 (“t”, 1H, J � 4.2 Hz, H-2), 5.09 (dd, 1H, J3,2 � 4.6 Hz, H-3), 6.00 (d, 1H,
J1,2 � 3.5 Hz, H-1), 6.51 (s, 1H, H-6), 7.47-8.12 (m, 5H, C6H5); 13C NMR � 14.54
(CH3), 27.07 and 27.21 (CMe2), 61.25 (CH2), 76.19 (C-3), 78.07 (C-2), 80.87 (C-
4), 104.91 (C-1), 114.23 (CMe2), 119.27 (C-6), 128.93, 129.38, 130.39, 134.00
(Ph), 144.23 (C-5), 163.78 (C-7), 165.87 (Bz); MS (FAB) m/z 399 (3, MH�[37Cl]),
397 (9, MH�[35Cl]), 341 (36, M� - 57, [37Cl]), 339 (100, M� - 57, [35Cl]).

Anal. Calcd for C19H21ClO7 (396.82): C, 57.51; H, 5.33. Found: C, 57.49; H,
5.58.
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Further elution of the column gave dimer 3b (23 mg, 10%): mp 166-169 °C;
1H NMR � 1.39 and 1.62 (2 � s, 2 � 3H, 2 � Me), 4.91 (d, 1H, J4,3 � 8.6 Hz, H-
4), 5.02 (“t”, 1H, J � 4.2 Hz, H-2), 5.12 (dd, 1H, J3,2 � 4.8 Hz, H-3), 5.99 (d, 1H,
J1,2 � 3.6 Hz, H-1), 6.95 (s, 1H, H-6), 7.44-8.08 (m, 5H, C6H5); 13C NMR � 27.04
and 27.20 (CMe2), 75.25 (C-3), 77.86 (C-2), 81.22 (C-4), 104.84 (C-1), 113.98
(CMe2), 124.24 (C-6), 128.88, 129.45, 130.34, 133.89 (Ph), 135.07 (C-5), 165.99
(Bz); MS (FAB) m/z 673 (11, MNa�[37Cl2]), 671 (65, MNa�[37Cl, 35Cl]), 669
(100, MNa�[35Cl2]).

Anal. Calcd for C32H32Cl2O10 (647.51): C, 59.35; H, 4.98. Found: C, 59.71;
H, 5.35.

Ethyl (Z)-5-Chloro-3-O-methyl-5,6-dideoxy-1,2-O-isopropylidene-�-D-
xylo-hept-5-enofuranuronate (2c). Treatment of 1c2a (149 mg, 0.75 mmol) by pro-
cedure A [5 h; TLC indicated complete consumption of 1c (Rf 0.55) with forma-
tion of 2c (Rf 0.62) and 3b (Rf 0.53)] gave 2c (156 mg, 68%) as a solidified syrup:
mp 61-62 °C; 1H NMR � 1.28 (t, 3H, J � 7.2 Hz, CH3), 1.33 and 1.51 (2 � s, 2 �
3H, 2 � Me),  3.40 (s, 3H, OMe), 4.02 (d, 1H, J3,4 � 3.2 Hz, H3), 4.19 (q, 2H, J �
7.1 Hz, CH2), 4.60 (d, 1H, J2,1 � 3.6 Hz, H-2), 4.78 (dd, 1H, J4,6 � 1.6 Hz, H-4),
5.96 (d, 1H, H-1), 6.49 (d, 1H, H-6); 13C NMR � 14.54 (CH3), 26.65 and 27.33
(CMe2), 59.16 (OMe), 60.81 (CH2), 81.66 (C-2), 83.35 (C-4), 84.23 (C-3), 105.72
(C-1), 112.84 (CMe2), 117.20 (C-6), 142.53 (C-5), 164.15 (C-7); MS (APCI) m/z
309 (43, MH�[37Cl]), 307 (100, MH�[35Cl]).

Anal. Calcd for C13H19ClO6 (306.75): C, 50.90; H, 6.24. Found: C, 51.27; H,
6.32.

Further elution of the column gave 3c (38 mg, 11%): mp 91-93 °C; 1H NMR
� 1.33 and 1.51 (2 � s, 2 � 3H, 2 � Me), 3.40 (s, 3H, OMe), 3.97 (d, 1H, J3,4 �
3.1 Hz, H3), 4.61 (d, 1H, J2,1 � 3.6 Hz, H-2), 4.81 (d, 1H, H-4), 6.02 (d, 1H, H-1),
6.91 (s, 1H, H-6); 13C NMR � 26.72 and 27.33 (CMe2), 59.16 (OMe), 81.96 (C-2),
82.81 (C-4), 84.41 (C-3), 105.60 (C-1), 112.64 (CMe2), 120.43 (C-6), 130.95 (C-
5); MS (APCI) m/z 471 (12, MH�[37Cl2]), 469 (68, M�[37Cl, 35Cl]), 467 (100,
MH�[35Cl2]).

Anal. Calcd for C20H28Cl2O8 (467.35): C, 51.40; H, 6.04. Found: C, 51.01;
H, 6.25.

Ethyl [Methyl (Z)-5-Chloro-5,6-dideoxy-2,3-O-isopropylidene-�-D-ribo-
hept-5-enofuranosid]uronate (5). Treatment of 42a (149 mg, 0.75 mmol) by proce-
dure A (5 h) gave 5 (165 mg, 72%) as a syrup: 1H NMR � 1.28 (t, 3H, J � 7.2 Hz,
CH3), 1.33 and 1.51 (2 � s, 2 � 3H, 2 � Me),  3.47 (s, 3H, OMe), 4.19 (“dq”, 2H,
J � 2.2 Hz, J � 7.2 Hz, CH2), 4.57 (d, 1H, J2,3 � 6.1 Hz, H-2), 4.73 (“t”, 1H, J �
1.8 Hz, H-4), 4.89 (dd, 1H, J3,4 � 2.1 Hz, H-3), 5.10 (s, 1H, H-1), 6.43 (d, 1H, J6,4

� 1.6 Hz, H-6); 13C NMR � 14.58 (CH3), 25.49 and 27.08 (CMe2), 56.62 (OMe),
61.04 (CH2), 83.66 (C-3), 85.01 (C-2), 90.44 (C-4), 111.41 (C-1), 113.64 (CMe2),
116.42 (C-6), 146.51 (C-5), 164.15 (C-7); MS (APCI) m/z 309 (43,MH�[37Cl]),
307 (100, MH�[35Cl]).

Anal. Calcd for C13H19ClO6 (306.75): C, 50.90; H, 6.24. Found: C, 50.52; H,
6.23.
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3-O-(tert-Butyldimethylsilyl)-5,6,7-trideoxy-1,2-O-isopropylidene-�-D-
ribo-hept-6-ynofuranose (7). BuLi/hexane (1.6 M; 8.1 mL, 13 mmol) was added
dropwise to a solution of 614 (875 mg, 1.85 mmoL) in dried THF (15 mL) at �78
°C and stirring was continued for 1 h with the temperature slowly increasing to �
�60 °C. The mixture was neutralized (AcOH, pH �6.5) and was partitioned
(EtOAc//NaHCO3/H2O), and the aqueous layer was extracted (EtOAc).  The com-
bined organic phase was washed (brine) and dried (MgSO4). Volatiles were evap-
orated and the residue was column chromatographed (15 → 30% hexane/EtOAc)
and fractions containing pure 7 [TLC:  Rf 0.71; Rf 0.78 (6)] were evaporated to give
7 (300 mg, 52%): 1H NMR � 0.14 and 0.15 (2 � s, 2 � 3H, 2 � Me), 0.94 (s, 9H,
t-Bu), 1.35 and 1.56 (2 � s, 2 � 3H, 2 � Me), 2.04 (t, 1H, J7-5,5′ � 2.6 Hz, H-7),
2.47 (ddd, 1H, J5′,5 � 17.4 Hz, J5′,4 � 4.4 Hz, H-5′ ), 2.71 (dt, 1H, J5-7,4 � 3.2 Hz,
H-5), 3.92 (dd, 1H, J3,4 � 8.7 Hz, J3,2 � 4.5 Hz, H-3), 4.00 (“quint”, 1H, J � 4.2
Hz, H-4), 4.46 (t, 1H, J2-1,3 � 4.1 Hz, H-2), 5.79 (d, 1H, J1,2 � 3.7 Hz, H-1); 13C
NMR � �4.37, �4.14 (2 � Me) 18.59 (CMe3), 21.01 (C-5), 26.17 (CMe3), 26.99
and 27.27 (CMe2), 71.05 (C-7), 75.07 (C-3), 77.03 (C-4), 79.48 (C-2), 80.02 (C-6),
104.35 (C-1), 113.00 (CMe2);  MS (APCI) m/z 313 (6, MH�), 255 (100, M� - 57).

Anal. Calcd for C16H28O4Si (312.48): C, 61.50; H, 9.03. Found: C, 61.66; H,
9.27.

Ethyl (Z)-3-O-(tert-Butyldimethylsilyl)-6-chloro-5,6,7-trideoxy-1,2-O-iso-
propylidene-�-D-ribo-oct-6-enofuranuronate (8). Treatment of 7 (172 mg, 0.55
mmol) by procedure A (5 h) gave unchanged 7 (19 mg, 11%) followed by 8 (160
mg, 69%):  1H NMR � 0.11 and 0.15 (2 � s, 2 � 3H, 2 � Me), 0.91 (s, 9H, t-Bu),
1.28 (t, 3H, J � 7.2 Hz, CH3), 1.33 and 1.55 (2 � s, 2 � 3H, 2 � Me),  2.57 (dd,
1H, J5′,5 � 15.1 Hz, J5′,4 � 8.7 Hz, H-5′), 2.76 (dd, 1H, J5,4 � 2.4 Hz, H-5), 3.65
(dd, 1H, J3,2 � 4.5 Hz, J3,4 � 8.8 Hz, H-3), 4.17-4.23 (m, 3H, H-4 & CH2), 4.43
(“t”, 1H, J � 4.1 Hz, H2), 5.72 (d, J1,2 � 3.7 Hz, 1H, H-1), 6.38 (s, 1H, H-7); 13C
NMR � �4.39, �3.98 (2 � Me), 14.61 (CH3), 26.12 (CMe3), 27.06 (CMe2), 44.19
(C-5), 60.76 (CH2), 76.68 (C-4), 76.74 (C-3), 79.19 (C-2), 104.21 (C-1), 113.16
(CMe2), 118.70 (C-7), 146.32 (C-6), 164.16 (C-8); MS (APCI) m/z 365 (42, M� -
57, [37Cl]), 363 (100, M� - 57, [35Cl]).

Anal. Calcd for C19H33ClO6Si (421.01): C, 54.21; H, 7.90. Found: C, 54.01;
H, 8.09.
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